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ABSTRACT 

The 22nm logic technology node with dimensions of ~32nm will be the first node to require some form of pitch-halving. 
A unique combination of a Producer APF®-based process sequence and GDR-based design style permits 
implementation of random logic functions with regular layout patterns. The APF (Advanced Patterning Film) pitch-
halving approach is a classic Self-Aligned Double Patterning scheme (SADP) [1,2,3,4] which involves the creation of 
CVD dielectric spacers on an APF sacrificial template and using the spacers as a hardmask for line frequency doubling.  
The Tela Canvas™ implements Gridded Design Rules (GDR) using straight lines placed on a regular grid. Logic 
functions can be implemented using lines on a half-pitch with gaps at selected locations. 
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1. INTRODUCTION 
Scaling of integrated circuits over the past 50 years has been enabled by the dramatic improvements in overlay and 
resolution of photolithography equipment. During this time, equipment cost increases have been offset by increased 
productivity, keeping the final products on well documented learning curves such as the price per DRAM bit (currently 
measured in micro-cents). 

The forecast for photolithography performance needs and solutions has been coordinated by the ITRS organization for 
many years, with biannual updates [5]. Several technologies have come and gone from these forecasts, for example 
157nm F2 excimer laser illumination, reflecting the continual struggle to achieve technical progress at affordable costs at 
the right time. The 2006 update of the ITRS shows all of the lithography resolution-limited factors as yellow or red for 
2008, highlighting the difficulties faced by companies trying to develop scaled technologies. 

Using the Rayleigh equation, CD = k1 λ/NA, it becomes clear that if progress is not made in the wavelength λ, or the 
numerical aperture NA, then the burden of scaling to smaller CD’s falls to the fitting factor k1. Given that the last optical 
scanner announced for production was introduced in 2007, the industry is faced with λ/NA = 143nm for the foreseeable 
future. The trend in CD (half-pitch) and wavelength is illustrated in Figure 1 for logic technology nodes from 180nm to 
22nm. Where the curves separate, k1 has to decrease to make up the difference. 
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Fig. 1. Trend in illumination wavelength and feature size half-pitch for logic technology nodes. 
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The 22nm logic technology node is expected to have a metal-1 half-pitch of approximately 32nm when production starts 
in 2013. If λ/NA = 143nm remains true for production equipment, then the required k1 value is 0.22. This is well below 
the practical limits of 0.37 for 2D patterns and 0.28 for 1D patterns, and the theoretical limit of 0.25 [6]. 

Double patterning has been proposed as a potential solution. 193i double patterning was added to the ITRS roadmap in 
the 2006 update for 45nm and 32nm half-pitch technologies. There are a number of drawbacks to either double exposure 
or double exposure / double etch. The issues include the EDA problem of splitting the pattern correctly, OPC for semi-
isolated features, overlay of the patterns on masks and subsequently wafers, cost of two immersion scanner passes, and 
defectivity from the additional operations. There is also the problem that most double patterning is really triple 
patterning, with two passes of critical line exposure and one pass of less critical end cutting. 

The 22nm logic node solution studied in this paper involves pitch halving using a sequence of deposition and etching 
steps instead of multiple critical exposure steps. The use of APF (Advanced Patterning Film) as an easily removable hard 
mask is an important enabling factor. The GDR (Gridded Design Rule) design style, using the Tela Canvas™ and logic 
architecture, is the other key element making the structures useful for circuit design. The combination of SADP and Tela 
Canvas™ may be considered to extend the capability of existing wafer fabs to smaller CD’s with minimal investment. 

2. APF PROCESS SEQUENCE FOR PITCH HALVING 
The APF based SADP sequence for pitch halving involves 

• Printing at a pitch of twice the target pitch. 

• Resist trimming to a 1:3 (line to space) ratio 

• Etching a sacrificial template (in this case APF) 

• Forming sidewall spacers of the desired final linewidth. 

• Removing the original template material (in this case by O2 ash). 

• Utilizing the sidewall spacers as hardmask for patterning substrate. 

• Perpendicular cuts can be etched for generating circuit functions. 

 

The creation of 22nm half-pitch GDR (gridded design rule) structures combines the prior art of (a) 22nm half-pitch 
SADP intended for NAND Flash array patterning [1,2] with (b) the cutting of array structures for manipulation into non-
Flash circuits [3,7,8,9].  To demonstrate the most basic structure, we focused on generating 22nm patterns comprised of 
both long lines and small islands mixed densely together.   

 

2.1 Forming 22nm half-pitch arrays 

To create an initial 22nm line and space array, we designed a patterning film stack starting with a CVD amorphous 
carbon hardmask (APF), with a CVD nitride (or silicon) cap, followed by another CVD amorphous carbon to be used as 
a sacrificial template, with another dielectric cap. The full sequence is depicted in Figure 2.  Photolithography was 
performed using an ASML 1700i water immersion tool, printing 45nm lines and spaces, which were subsequently 
trimmed to 23nm lines (67nm space) before etching the APF template.  Following this, a CVD dielectric spacer was 
deposited targeting a 22nm sidewall width, leaving a 23nm gap between spacers.  After spacer etch, the APF template 
was cleanly removed using a conventional oxygen ash process requiring no wet-clean.  Finally, the spacers were used as 
a hardmask to transfer the pattern into the bottom layer of APF, which was then used to drive the final pattern into 
silicon.  Since APF is a widely adopted hardmask for most dielectrics and conductors used in the semiconductor 
industry, this scheme could be applied universally to any desired substrate material.  SEM image snapshots of the 
process flow are shown below in Figure 3.  The CD performance typically obtained on small wafer runs, measuring 20 
die per wafer, is in the range of 1-2nm (3 sigma) and less than 2nm (mean) for line edge and line width roughness as 
illustrated in Figure 4.  For additional details on 22nm SADP, please refer to the accompanying conference paper (6924-
169) entitled “22nm Half-Pitch Patterning by CVD Spacer Self Alignment Double Patterning (SADP)”. 



 
 

 
 

Copyright 2008.  This paper was published in SPIE Advanced Lithography Conference, February 2008 and is made available as an 
electronic reprint with permission of SPIE.  One print or electronic copy may be made for personal use only.  Systematic or multiple 
reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for 
commercial purposes, or modification of the content of the paper are prohibited. 
 
SPIE Advanced Lithography Conference 2008    6925-48      Tela Innovations, Applied Materials 3 

 

 
Figure 2:  Illustration of process flow for generating 22nm STI array. 

  

 
Figure 3:  SEM image snapshots throughout process flow. 

 

 
Figure 4:  Typical CD performance from the dual APF SADP process flow. 

 

 

2.2 Cutting the 22nm array into GDR structures 

To manipulate the 22nm array into various examples of GDR structures, we overlaid cut masks above the patterned STI.  
In this case, we did not have purpose-built masks for making specifically engineered structures; therefore, we took some 
conventional 45nm node via link structures and forced them to overlay using an ASML 1400e scanner.  Figure 5 shows 
examples printed without BARC to illustrate how the structures overlay and examples with BARC which were used for 
the actual cutting process.   Additionally, Figure 6 shows the superposition of the masks over the STI array before and 
after BARC etch.  

Finally, a silicon etch was performed to cut the once continuous array of STI into a 22nm active areas comprised of both 
long lines and small islands mixed densely together.  The completed examples of 22nm densely packed GDR structures 
are shown in Figure 7.  Therefore, we successfully achieved the objective, which was to combine the newest SADP 
patterning strategies being implemented at aggressive geometries for NAND FLASH devices with the arising concept of 
using cross-cut double patterned lines for creating GDR structures that could pave the way for new designs of logic and 
other devices.  And is this case, we demonstrated the feasibility of creating 22nm half-pitch circuits using conventional 
wafer fab equipment.    
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Figure 5:  Cut masks patterned over the 22nm STI array.  Printed without BARC (left) for example only of superposition 
and printed with BARC (right) which as used for manufacturing cuts. 

 

 
Figure 6:  Tilt view of cut mask superimposed over the STI array.  As printed (left) and after BARC etch (right)  

 

 
Figure 7. Examples of 22nm half-pitch GDR structures patterned into silicon. The Structures are manufactured using an 
SADP spacer hardmask scheme in conjunction with a cut mask. 

Via links superimposed (with BARC) After BARC etch exposing STI array 



 
 

 
 

Copyright 2008.  This paper was published in SPIE Advanced Lithography Conference, February 2008 and is made available as an 
electronic reprint with permission of SPIE.  One print or electronic copy may be made for personal use only.  Systematic or multiple 
reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for 
commercial purposes, or modification of the content of the paper are prohibited. 
 
SPIE Advanced Lithography Conference 2008    6925-48      Tela Innovations, Applied Materials 5 

3. CIRCUIT FUNCTIONS IMPLEMENTED USING THE TELA CANVAS™ 
The pitch-halving technique described in section 2.1 works very well for grating patterns like NAND FLASH memory 
array active “sticks,” bitlines, and wordlines. The challenge for logic is to use a process as described in section 2.2 to 
split the array lines into segments useful for circuit functions. A design style which uses regular structures is more 
suitable for low k1 lithography and pitch halving [10]. 

The section 2 description of the pitch-halving applies to active/STI, as illustrated in the figures. It also can apply to the 
gate pattern, as mentioned in the references. The following sections give examples of the SADP applied to the gate level 
of CMOS circuits. 

3.1 SRAM application 

SRAM bit cells have used two patterning steps since at least the 45nm technology node [8]. This approach has been 
considered for over 12 years and has been well documented (see for example [7,9]). The gates are first patterned as long, 
parallel lines extending across the memory array. A second pattern using slots perpendicular to the gate lines is then used 
to cut the gates into segments. These segments form the 6 transistors of a conventional SRAM cell. Figure 8 shows an 
example of the active and gate layout, including where the cuts are made. 

  
Figure 8. SRAM cell layout with vertical active regions, horizontal gate stripes, and gate-cuts (dashed boxes). 

Because of the regular, repeating pattern in the SRAM array, the gate lines can be cut in pairs by the cut mask. The mask 
is needed because end-rounding and end-pullback would require more overlap of the active regions by the gates to 
ensure that the full transistor length is maintained across each transistor channel. Extra gate overlap would increase the 
width of each bit cell, a factor which is amplified by the number of columns in a typical array. 

The impact of end-rounding and end-pullback is going to get worse at 32nm and 22nm as the lithography k1 gets lower. 
Since the cut mask will be needed for the SRAM bit cell, it should be usable in other parts of a chip as long as the design 
style has regularity similar to an SRAM array. 

3.2 Logic GDR layouts which can use SADP and gate cutting 

Conventional random logic has a layout with many 2D patterns and many combinations of widths and spaces. To take 
advantage of the finer pitch provided by SADP, a highly regular design style like the Tela Canvas™ is needed. The 
following examples show how different circuit functions can be realized using SADP and a cut mask. 

One of the building blocks of digital logic is the inverter. The output Q- is the logical inverse of the input Q. Figure 9a 
shows the schematic of a CMOS inverter. The NMOS and PMOS transistors have common gates and drains. The sources 
are tied to supply rails. A partial layout of the inverter is shown in Figure 9b. Horizontal metal tracks are shown for 
reference to indicate n+ and p+ active region sizes and their relationship. Vertical gates are also shown as they would 
appear in a final circuit. Figure 9c shows the initial layout of the gates as well as the cut mask slots needed to separate 
gate lines at the cell top and bottom edges. For this kind of circuit, no cuts are needed in the interior of the cell. 
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Figure 9. CMOS inverter: a. schematic, b. layout, and c. illustration of the gate and cut masks. 

Another important building block for digital logic is the transmission gate shown in Figure 10. The circuit functions to 
pass a signal from the input to the output through the parallel NMOS and PMOS transistors Figure 10a shows the 
schematic of the CMOS transmission gate. The NMOS and PMOS transistors have common sources and drains. The 
gates are tied to control signals which are the logical inverse of each other. A partial layout of the transmission gate is 
shown in Figure 10b. As before, horizontal metal tracks are shown for reference to indicate n+ and p+ active region sizes 
and their relationship. Vertical gates are also shown as they would appear in a final circuit. Figure 10c shows the initial 
layout of the gates as well as the cut mask slots needed to separate gate lines. Notice that for this logic function, cuts are 
needed at the top, bottom, and interior of the cell. Although Figure 10 shows an interior cut used only for the actual 
transistor gate, the cut could extend across all three gate lines. 

These cells can be combined into more complex cells, also utilizing the SADP process described in section 2. Figure 11 
is an illustration of how the vertical line pattern from Figure 7 could be used to form the gates of adjacent inverter and 
transmission gate cells. The N+ and P+ active regions could be formed using a line plus cut approach, with SADP used 
depending on the widths of the transistors (the height of the active regions). The width of the cut line could be reduced 
by a resist-shrinkage step if needed, allowing more vertical room for wider transistors. 

 

 
Figure 10. CMOS transmission gate: a. schematic, b. layout, and c. illustration of the gate and cut 

masks. 
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Figure 11. Illustration of how a combination of inverter and CMOS transmission gate could be built 

using the line pattern from Figure 7 for the gates. 

 

4. CONCLUSIONS 
The combination of an APF-based pitch halving process sequence and Tela Canvas™ design style has been used to 
demonstrate 22nm half-pitch GDR structures suitable for the 16nm logic technology node and beyond. These are 
expected to provide a cost-effective alternative to double (triple) exposure processes and EUV lithography. 
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